THE STRUCTURE OF NEW SESQUITERPENES FROM BASIDIOMYCETES

Shigeo Nozoe, Hitomi Matsumoto, and Shiro Urano

Institute of Applied Microbiology, University of Tokyo,

Bunkyo-ku, Tokyo, Japan

(Received in Japan 23 June 1971; received in UK for publication 29 June 1971)

Fomannosin¹⁾ \mathcal{I} is a metabolite of the wood-rotting fungus, <u>Fomes annosus</u> Karst, which causes decay of the living wood. This substance was reported to have a phytotoxic activity toward seedlings of <u>Pinus tadea</u>.²⁾ In the course of an investigation of biosynthesis of the fungal isoprenoids produced by Basidiomycetes, we have isolated two new furanoid sesquiterpenes along with fomannosin \mathcal{I} , from <u>Fomitopsis insularis</u> which was nonpathogenic and commonly found on pine tree. We assign structure 1 and 3 to these substances from their physicochemical properties.

The compound 1, $C_{15}H_{20}O_2$ (M⁺, 232) had $[\alpha J_D + 69.5^{\circ}, \lambda \max 215 nm$ (£, 5100): Ymax 3610, 3490, 876 cm⁻¹. The nmr spectrum of 1 shows the signals at δ 0.88, 1.13, 1.72 (three methyl groups), 4.23 (1H, d, J=11 Hz, a methine proton on a carbon bearing a hydroxyl group), 3.33, 2.88 (ABq, J=16 Hz, an allylic methylene) and 7.04, 7.72. The presence of the β,β -disubstituted furan ring was indicated by nmr, ir (876 cm⁻¹) uv and mass fragmentation (<u>m/e</u> 81).

Double resonance experiments on the acetate 2 indicate that the following proton arrangement must be involved in 2, coupling constants are shown as follows respectively: Jab=1.8 Hz, Jbc=1.0 Hz, Jcd=10.5 Hz, Jde=7.5 Jdf=9 Hz, Jef 13 Hz, Jga=1.0 Hz, Jah \simeq 0, and Jgh=16 Hz.

$$- \underbrace{\operatorname{Hg}}_{C} \underbrace{\operatorname{Hh}}_{C} \xrightarrow{\operatorname{Ha}}_{C} \underbrace{\operatorname{Ha}}_{C} \xrightarrow{\operatorname{Hb}}_{C} \underbrace{\operatorname{Hc}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{He}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{He}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{He}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace{\operatorname{Hf}}_{C} \underbrace{\operatorname{Hd}}_{C} \underbrace$$

The compound 3, $C_{15H22O3}$ (M⁺, 250), nmr (S) 1.02 (s, 6H), 1.18 (s, 3H), 2.87, 2.65 (ABq, J=16 Hz), 4.60 (d, J=5 Hz), 5.25 (br.s, 2H), 7.10, 7.22 (1H each) gives a crystalline monoacetate 4, $C_{17H24O4}$ (M⁺, 292), m.p. 125°, nmr (S) 1.06, 1.08, 1.19 (each 3H), 2.08 (s, 3H) 2.46, 2.81 (ABq, J=15 Hz), 5.79 (d, J=8 Hz), 7.09, 7.16. The presence of furan ring in 2 was supported by readily formation of the Diels-Alder adduct with diethyl acetylenedicarboxylate to give compound 6. Treatment of the acetate 4 with phosphorus oxychloride in pyridine

afforded a dehydration product, 5, $C_{17}H_{22}O_3$ (M⁺, 272): λ max 238 nm (E, 6280). In the nmr spectrum of 5, one of the tertiary methyl signal in 4 (1.19) shifts to 1.88 and a new olefinic proton signal appeared at δ 6.00 (br. s, 1H). These data show that the structure of 3 has the same skeleton as 1,

From the data mentioned above, the two compounds must have structures \downarrow and \supsetneq respectively. It is considered that the compounds have close biogenetical relationship to marasmic acid.³⁾ Co-occurrence of \downarrow and fomannosin \Huge{l} suggests the biogenesis of both compounds.

Acknowledgement: The authors are grateful to Dr. K. Aoshima for providing us a strain of Fomitopsis insularis.

REFERENCES

- J. A. Kepler, M. E. Wall, J. E. Mason, C. Basset, A. T. McPhaul, and G. A. Sim, <u>J. Am. Chem. Soc.</u>, 89, 1260 (1967).
- C. Bassett, R. T. Sherwood, J. A. Kepler, P. B. Hamilton, <u>Phytopathology</u>, <u>57</u>, 1046 (1967).
- J. J. Dugan, P. de Mayo, M. Nisbet, J. R. Robinson, M. Anchel, <u>J. Am. Chem.</u> Soc., 87, 2768 (1965): <u>Ibid.</u>, <u>88</u>, 2838 (1966).